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Canister duration

Canister limit

GLOSSARY

The elapsed time from the beginning of either real or simulated
breathing until the partial pressure of CO; in the canister effluent
consistently exceeds 0.5 kPa (0.5% SEV).

The working time allowed for a canister under particular
environmental and work conditions. It is generated by applying a

statistically appropriate safety factor to the average canister duration
for a given environmental condition.

Confidence limits (on the mean)

FAA

Prediction limits

NAVSEA
NEDU

SEV

STPD

VCO:

Y0,

A measure of the statistical certainty of population means.
Confidence limits comprise the upper and lower boundaries of a
confidence interval, which define a range of values in which there is a
specific likelihood (level of confidence) that a parameter (such as a
mean) will fall.

Federal Aviation Administration

A measure of the statistical certainty of future measurements made under
identical conditions. An upper and a lower limit define the prediction
interval expressing some level of confidence in the appearance of future
measurements. Canister limits are equal to the lower of the prediction
limits.

Naval Sea Systems Command

Navy Experimental Diving Unit

Surface equivalent value. One way of expressing the partial pressure

of a gas referred to 1 ATA. The preferred way of expressing partial

pressure is in pressure units, i.e. kPa. A 0.5% SEV is approximately
equal to 0.5 kPa.

Standard temperature (0°C), pressure (1 atm abs), dry. 760 mmHg,
with 0 mmHg water vapor pressure.

CO; production expressed in L-min” at STPD conditions.

Metabolic oxygen consumption in L-min” at STPD conditions.

vi



INTRODUCTION

For the past several years, NEDU has been applying statistical techniques used in
medicine and industry to determine how long a diver can safely use a CO, absorbent
canister in a closed or semi-closed circuit underwater breathing apparatus (UBA). Those
UBA are often referred to as rebreathers. The current statistical techniques differ from the
methods used at NEDU ten to twenty years ago, and have been described in part in
several classified NEDU technical reports. The purpose of this report is to explain the
rationale for our current statistical practices, and to expand upon our descriptions of the
methodology. Our approach will be intuitive and largely non-mathematical.

Why Statistics?

A quote originating from a researcher at the Memorial Sloan-Kettering Cancer
Center' and used in the Primer of Biostatistics® reflects the essence of this report.

Hunches and intuitive impressions are essential for getting
the work started, but it is only through the quality of the
numbers at the end that the truth (current author's italics)
can be told.'

Throughout this report we will be concerned with statistical methods for revealing the
truth.

Twenty-five years ago, the U.S. Navy was seeking a CO, monitor for use in
rebreathers®. Unfortunately, the engineering difficulties have been daunting; the search
for such a monitor continues to this day. Consequently, when NEDU determines the
length of time that a CO; absorbent canister can be safely used in UBA, we measure the
time required for CO; to start passing all the way through the canister during simulated
dives. CO; leakage, called canister break-through, is caused by partial depletion of the
CO, absorption ability of the canister. From the few measurements made in our
laboratory, we must infer how long the canisters will protect divers from CO, poisoning
when used by the fleet. The process of inferring the outcome of 1000+ real dives based
on the results of 20 simulated dives is one that requires carefully thought out statistical
techniques. Those techniques are described below.




THEORY
Definitions

NEDU has historically defined a canister duration as the elapsed time from the
beginning of either real or simulated breathing until the partial pressure of CO; in the
canister effluent consistently exceeds 0.5 kPa (0.5% relative to 1 ATA or surface
equivalent value (SEV)). The canister duration is strongly influenced by absorbent
characteristics, canister design, absorbent bed moisture, pressure, temperature, and diver
work rate. On the other hand, a canister limit is the working time allowed for a canister
under particular environmental and work conditions. It is generated by applying a
statistically appropriate safety factor to the average canister duration for a given
environmental condition.

In a perfect world

For reasons of conjecture, we will assume that we in fact have the technology to
monitor CO; levels in a UBA, and that the monitor is reliable; as reliable as the pressure
gauge in SCUBA, or as the fuel gauges in jet aircraft. With such CO, monitors it should
be theoretically possible to continue a dive until the monitor reads “E” for empty and
then to surface. For a diver that would, of course, be unwise. Cave divers and pilots both
apply safety margins to their operations to account for unexpected events. Those safety
margins have been built up through the years based on experience — which is to say that
as safety data is accumulated, operating policies have been established based upon a
statistical review of the available data, tempered with carefully conducted risk/benefit
analyses.

As an example, cave divers operate on the 1/3 rule. Two divers will continue a
cave penetration until 1/3 of their gas is expended, then turn around. If one of the buddy
pair has a total gas failure, then there should be enough gas remaining in the other diver’s
bottle to get both of them back to the surface. That gas supply safety factor has been
found adequate to cover most contingencies.

Of course, cave divers still run out of gas and drown, but the basic policy remains
unchanged because of the cost/benefit analysis that says carrying even more on board gas
becomes a logistical and mobility burden, for very little potential payoff. In other words,
the probability that a diver’s life will be saved by expanding his percentage of extra gas
(a clear benefit) becomes very low compared to the risk that the extra gas will
compromise or limit the diver’s mission. The application of statistics and probability that



goes into these consensus opinions within cave diving training organizations may be
informal, but they never-the-less occur.

Airlines and the FAA have likewise required operational safety margins for fuel
management. Every pound of fuel carried on board means one less pound of paying
passenger. But running out of fuel in flight is an event that airlines and the FAA
strenuously avoid. So how are the risk/benefits managed?

FAA regulations require that an aircraft operating on an Instrument Flight Plan
must carry enough fuel on board to reach their destination, attempt an approach, then if
necessary fly to an alternate destination known to have better weather, and still land with
45 min of fuel on board. This rule keeps the majority of aircraft out of the “fuel
exhaustion” accident category. But not always; even commercial aircraft have run out of
gas in route due to unexpected circumstances.

In summary, even with accurate, certified instrumentation to indicate the supply
of a critical expendable substance like air or fuel, and with safety procedures and margins
developed from accident statistics and cost/benefit analyses, unforeseen events still cause
people to die.

Diving Reality

In a rebreather, there are two expendables that sustain a diver’s life as long as they
are available; namely oxygen and CO, scrubbing ability. Unfortunately, only one of these
can be measured — the O, supply. Lack of a monitor of CO; scrubbing effectiveness
would not be a problem as long as it could be assured that the scrubber would always
outlast the oxygen supply. If the critical expendable can be monitored, then the more
abundant expendable can be ignored.

In fact, however, scrubber effectiveness depends on a multitude of factors,
including water temperature, moisture content of the bed, absorbent quality, flow rate
through the absorbent canister, the packing of the absorbent bed, and the CO; production
rate of the diver. The latter depends in turn on the diver’s work rate and oxygen
consumption rate, and a proportionality “constant” called R, the respiratory exchange
ratio. That ratio determines how much CO; is produced for a given amount of O,
consumed. An R of 0.8 means that 0.8 moles of CO; are produced for each mole of
oxygen consumed metabolically. Unfortunately, R is not really a constant — it normally
varies between 0.7 and 1, depending upon the diver’s diet, workload, and even
temperature®. During strenuous exertion’ it can climb as high as 1.5.




The result of all these confounding factors is that we can never be sure that a CO,
canister’s scrubbing ability will outlast the diver’s monitored oxygen supply. The
situation is somewhat akin to hoping that the capacity of a commercial aircraft’s sewage
holding tank outlasts the plane's fuel supply. It usually does, but passengers that frequent
the rear of aircraft occasionally notice the distinctive odor indicating a mismatch between
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Figure 1. A normal (Gaussian) distribution. See text for details.

the ideal situation and reality. The big difference between the airline passenger and a
diver is that when a diver’s gaseous "sewage tank" overflows, the diver becomes
unconscious.

Safety Factors

The key to keeping a diver alive amidst all the unpredictable confounding factors
described above is the judicious use of statistically based canister duration limits. What
does “statistically based” mean? It can be nothing more than measuring the average or
“mean” time that a canister will last before overflowing. The mean (p) is a statistic.
Going one step further, one can also measure how the canister durations vary around that
mean. A common measure of that variability is called the standard deviation (), the
magnitude of deviation of canister endurance around the mean duration. A large ¢ means



that some canisters last much shorter or longer than the average. A small 6 means the
canister durations are tightly clustered around the average duration.

A statistically based canister duration could simply be a duration based upon the
mean duration. By definition of the mean or average, in a large population of canisters
half of the canisters will last less than the average, and approximately half will last
longer. Thus a canister limit based upon the mean statistic is one that allows half of CO,
canisters to exceed the prescribed CO; limit. This event is called canister breakthrough.

The next step up in conservatism is to subtract one ¢ from the mean, and establish
that as a canister duration limit. In theory, if one conducted very many tests (> 1,000) of
canister duration under identical conditions, then subtracting one ¢ from the mean would
provide a duration that only 16% of the canisters would breakthrough prior to reaching.
Subtracting 2 os from the mean yields a limit exceeded by only 2.3% of canisters.

These points are illustrated in Figure 1 which shows the probability density
function for a normal or Gaussian distribution with a mean of 200 min, and a standard
deviation of 20 min. The y axis gives the probability of finding a particular canister
duration. The area underneath the curve represents cumulative probability and sums to
1.0. The probability of finding a canister duration less than some duration X is equal to
the area underneath the curve to the left of X. For instance, the probability of finding a
canister duration less than 300 min is essentially 1.0. The probability of encountering a
canister duration less than 200 min is one half of 1.0 or 0.5. That is, half of the durations
(area in grey including striped and cross-hatched areas) will be shorter than the mean.

All of the area to the left of the 180 min line (mean minus one o, horizontal line
shading) represents 16% of the total area, thus the probability of finding a duration equal
to or less than 180 min is 16%. The area to the left of the 160 min line (mean minus two

o, cross-hatched area) occupies 2.3% of the total. Thus the risk of encountering durations
less than or equal to 160 min is 2.3% or less.

Probability Calculations

Anyone who wants to confirm the above percentages can download from the

Internet a free Windows-based probability calculator. It is located at the following WEB
address: ‘

http://www.ncss.com/download.html




Once the program is running, the normal probability distribution (one of many)
can be selected. Under the "Input" column, the distribution mean and sigma (o) is
entered, followed by the canister duration (X) of interest. The probability of encountering
a duration less than or equal to X is then calculated and displayed under the column
labeled "Normal Results."

In general, knowing the mean (i) and standard deviation (o) of a large sample of
canister durations, one can determine the duration (Teisk) that will yield a risk of

breakthrough equal to the top row of Table 1 by subtracting from the mean a value equal
to K - 6, where K is given below its respective % risk

T%rixk = /l - K%ri.\'k ‘o (1)

Table 1. % risk and o multipliers.

% risk | 2.5 S 10 15 20 25 30 40 50

K 1.960 | 1.645 | 1.282 | 1.036 | 0.842 | 0.674 | 0.524 | 0.253 0

To illustrate this, we used a computer to simulate 5,000 canister durations
distributed in a normal or Gaussian manner. (Early versions of the commercial software
package StatGraphics (STSC, Rockville, MD) and recent versions of MathCad
(MathSoft, Cambridge, MA) can produce pseudo-random numbers distributed in a
variety of distribution shapes.) The measured mean for the population was 200 min, with
a o of 20 min, just as in Figure 1. By using equation 1 and Table 1, we obtain a table of
canister duration limits that provide increasing risk of canister breakthrough (Table 2).
By sorting the 5,000 “durations,” we were able to confirm that indeed only 125 durations
(2.5%) were shorter than 161 min, and that 500 durations (10%) were less than 174 min.

We conclude that when dealing with very large data sets (thousands of data
points) that canister duration and the risk of canister breakthrough can be accurately
predicted by subtracting some fraction of the standard deviation from the mean canister
duration. Furthermore, the greater the tolerated risk, the longer the canister duration limit.

Table 2. % risk and duration limits.

%risk | 2.5 S 10 15 20 25 30 40 S0

T(min) | 161 167 174 179 183 186 189 195 200




Sampling Error

Cost, time, and manpower constraints prevent NEDU from performing a large
number of canister duration runs under a single environmental condition. We are forced
to make inferences about canister durations based upon a small number of tests.
Unfortunately, small sample sizes do not estimate the total population of canister
durations particularly well, leading to potentially large errors in our estimates.

To explore the implications of sampling errors, we again used the above
mentioned large population of simulated canister durations. We will refer to that
population as the “Truth” data set. When plotting the frequency of occurrence of various
canister durations, the Truth data set (Figure 1) yielded the familiar bell shaped curve
centered upon a duration of 200 min, and with 68.3 % of the canister durations falling
within 19.8 min on either side of the mean.

At NEDU we typically perform five canister duration runs in any rebreather under
as close to identical conditions as possible. For the purposes of this report we can
simulate that process by having a computer draw five samples randomly from the Truth
data set, and then calculating the mean and standard deviation of those samples. Those
sample statistics are our best estimates of the characteristics of the Truth data set. We can
then apply some safety factor to those statistics to derive our published canister limit for
the tested conditions. As stated in the previous section, if we subtract one sample ¢ from
the sample mean, then we hope to derive a canister limit that produces only a 16% risk of
canister breakthrough if the canister is dived to the limit.

In Figure 2, we see that our goal is elusive. The solid circles are the canister
duration limits which resulted from 10 trials of five samples each of the Truth data set.
Remember, in reality we only get one trial. The horizontal lines are the canister limits that
would actually result in a breakthrough risk indicated at the right extreme of each line.
Although we expected a duration limit that would result in only a 16% chance of canister
breakthrough, what we actually received varied between a 4% and 49% risk.

In other words, based on any one trial we have virtually no confidence in our risk
assessment for the canister duration limit.
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Figure 2. Multiple trial samplings from a population of canister durations.
Canister duration limit for each sample was found by subtracting the
sample standard deviation (o) from each sample mean (p).

A Range of Temperatures

The above demonstration was for multiple trials at a single environmental
condition. Canister durations tend to decrease at deeper depths, and can decrease
dramatically at low water temperatures. Typically, NEDU determines canister durations
over a range of depths, and with temperatures ranging from 28°F to 90°F. At each
environmental condition we still take five samples as described above. (Although five
samples is our goal, technical difficulties occasionally limit us to as few as three tests per
environmental condition.).

In Figure 3 we plotted the results of repetitive trials, five samples per trial, one
trial for each of five water temperatures. Mean durations are indicated by solid circles,
the old NEDU limit of mean minus ¢ is shown as open circles. Since these trials are
computer generated we have the luxury of repeating each test as often as we wish. Here
we have plotted the results of four such repetitions. To simplify matters for this
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demonstration, we assumed that temperature had no effect on canister duration. All
variation in mean durations and the resulting duration limits are attributable to sampling
errors due to small sample sizes. Once again, the true risk of each canister limit, indicated
by a horizontal line, varied greatly, from less than 5% to almost 40%.

Modeling

In the above example, we made no judgment as to whether or not measurements
of canister durations taken at one temperature were related to similar measurements of
duration at another temperature. Each sample was assumed to be independent of the
others, each with its own mean and o, and each with its own highly variable canister limit
based upon the sample mean minus 6. From basic physico-chemical principles, however,
we know that the measurements at one temperature are related to those at other
temperatures. The relationship between them can be expressed by a mathematical
equation which we call a “model.”

Any model contains a mixture of known variables (such as temperature and
pressure) and unknown parameters. Although initially unknown, those parameters can be
estimated through a procedure called variously regression, curve fitting or parameter
estimation.

Scientists are often interested in particular equations or models that have been
suggested from first principles. There may be specific reasons why a particular model
should apply to a given physical or chemical process, such as Newton’s Second Law
applying to a body in free fall. However, there are also situations when no particular
model is preferred a priori. Any model that fits well to the data can be used to describe
the data. That is indeed the situation in which we find ourselves when modeling canister
duration data. We can use a computer to evaluate a multitude of potential models and find
the one which best fits the data. The model that best fits our canister duration data is
called an empirical model of canister performance.

The benefit of seeking an empirical model of canister performance is that the
model dramatically reduces the number of parameters that must be estimated from the
available data. For instance, in the examples above we assumed no relationship between
measurements made at different water temperatures. We tested at five temperatures, and
for each temperature estimated two parameters or statistics, namely the mean and
standard deviation for each measurement. A total of 10 parameters were estimated based
on a total of 25 canister durations. Because we have so many parameters to estimate from
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so few data points, we can not be very certain about any given estimate. That uncertainty
results in the highly variable predictions seen in Figures 2 and 3.

The Value of Regression

We can make much better use of canister duration data by describing them with
an empirical model. Such models are typically obtained through regression techniques, of
which the method of least squares is one of the more ubiquitous. The successful
prediction of an expected value of Y (for instance, canister duration) for a given value of
X (temperature) is a major aspect of regression analysis, “and has been suggested as one
justification for employing empirically fitted curves"®. In fact, “most regression lines are
empirically fitted curves, in which the functions simply represent the best mathematical

fit (by a criterion such as least squares) to an observed set of data™®.

A regression-based model derived from fits to the canister duration data may have
as few as two parameters if the durations are linear with temperature. Without the model,
we would be forced to estimate five times as many parameters from the same data. The
result of using the model is an increase in the confidence we have in making predictions
about future canister durations. We’ll see an example of that in a later section.

Prediction Limits in Regression

The use of prediction intervals in regression is an elementary statistical technique,
particularly well adapted to making, as the name suggests, predictions about future but
closely related events. Prediction intervals are introduced in virtually every beginning
statistics text under the subject of regression, although the exact terminology varies. For
instance, in Primer of Biostatistics® by S.A. Glanz (1992), the subject is referred to as
“the confidence interval for an observation.” In J.T. McClave and P.G. Benson, A First
Course in Business Statistics’ (1992), it is referred to as a “prediction interval for
individual values.”

More rigorous treatments are provided in Neter, Wasserman, and Kutner, Applied
Linear Statistical Models® (1990) where in section 3.5, Prediction of New Observations,
the authors refer to “prediction limits” and “prediction intervals." Likewise, in Sokol and
Rohlf, Biometgf, (1995), the subject is introduced as prediction limits.

Unfortunately, even among the more complete texts, there is a lack of

consistency. In Cohen and Cohen, Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences’, the topic is covered under “Confidence limits on a single Y
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value.". In Draper and Smith, Applied Regression Analysis'®, 2™ ed. (1981), the subject
is addressed as “confidence limits for new Ys." In general, modern statistical texts, either
basic or advanced in approach, tend to emphasize the wording “prediction intervals and
limits,” and so shall we.

NEDU first used regression techniques and confidence intervals to develop
canister limits for the NEDU report TR 2-93, MK 16 Canister Limits for SDV
Operatz'onsl ! Prediction intervals made their first appearance in NEDU TR 09-97,
Recommended Canister Limits for the Draeger LAR V/MK 25 UBA Using 408 L-grade
and 812 D-Grade Sofnolime’”.

The following three figures graphically demonstrate the meaning of prediction
intervals. We used a computer to generate 1,000 data points selected in the following
manner. An X value, representing temperature was chosen at random within the
temperature range of 28° F to 128° F. A Y value corresponding to the selected X was
then determined based on a known linear equation (for Figures 4 and 5) and a curvilinear
equation for Figure 6. To each Y value computed from its governing equation an error
term was added, with the sign of the error being chosen at random, and with the
magnitude of the error being distributed in an approximately Gaussian manner. In other
words, there was a high probability that an error term would be small, and that a selected
Y value would lie close to the value predicted by its governing equation. The odds that an
error term would be large, and that the “measured” Y would be located far from the mean
location, was small. However, with enough repetitive data gathering, even low
probability events do occur. It is immediately apparent, however, that the further a point
lies from the ideal location, the fewer neighbors it has because its appearance is relatively
unlikely.

Through a regression technique described in most elementary statistics texts, we
computed lines that represent the best estimate of the correct Y for a given X, and two
lines representing prediction limits. (Details of this process will be given in a following
section of this report.) The estimate for the best Y is one that minimizes the impact of the
error term for each data point, and which reproduces the dependence of Y on X defined
in the governing equation. It is the same line that is commonly found by linear or
nonlinear regression methods, and defines the average Y for a given X.

The lines representing a 95% prediction interval (Figure 4) lie at the boundaries of
a region that contains approximately 95% of the measured data points. We thus infer that
in future tests run under identical conditions, 95% of the new data will fall between those
lines. We also conclude that half of the remainder, or 2.5%, will fall below the 95%
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prediction limit, and 2.5% will occur above the upper prediction limit. When dealing with
small sample sizes it is common to see no data points falling below the lower limit; their
occurrence is relatively rare. However, with 1,000 computer generated data points,
approximately 25 points should fall both above and below the 95% limit lines.

Figure 5 shows the consequences of decreasing our confidence in the prediction
interval from 95% to 90%. When predicting new test results, only 90% will likely fall
within the 90% prediction limits. Half of the remainder, or 5% will fall below the
prediction line, and another 5% will reach above the upper prediction line.

The linear graphs of Figures 4 and 5 are similar to ones obtained during testing at
NEDU of semi-closed UBA. The curvilinear graph in this series (Figure 6) shows that
these predictions are not restricted only to linear conditions. The shape of Figure 6 is
similar to that found during testing of fully closed UBA such as the MK 16 and the LAR
V. In addition to prediction limits, Figure 6 also includes confidence limits about the
mean. With those confidence limits, we can be 95% certain that in future tests the mean
value of any Y for a given X will fall within the interval between those confidence limits.
Due to the large number of data points, the confidence regions about the mean are
narrow. As the number of data points decrease, our confidence in the estimates of the
mean will decrease, leading to wider confidence limits.
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Figure 4. Linear regression and 95% prediction limits for 1,000 data points.
The lower prediction limit defines a boundary below which only 2.5% of
canisters are expected to fall.
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Figure 5. 90% prediction limits on the regression.
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Figure 6. Regression of simulated durations nonlinearly dependent on temperature.
Curves show the 95% confidence interval bounded by the inner lines and 95%
prediction interval.
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APPLICATIONS
Example from the Biomedical Literature

The following example is described in Glanz?, pgs. 244-250, and is taken from a
1978 paper’? in the journal Radiology.

The heart’s ability to pump blood depends on the volume of the left ventricle at
the beginning of ventricular contraction. One way to estimate left ventricular (L'V)
volume is to use angiography to inject into the heart a dye visible with x-rays. Two
perpendicular x-ray views can be used to calculate LV volume. However, the
measurements must first be calibrated by x-raying casts of ventricles from cadavers, for
which actual LV volumes are known. Regressions of the LV volume estimated by
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Figure 7. The linear regression of cast volume against angiographic volume.

angiography reveal a linear relationship with the actual cast volumes (Figure 7). Figure 8
has lines representing the “95% confidence interval for an additional observation (in
more modern terminology a 95% prediction interval) of cast volume given angiographic
volume. This is the confidence (prediction) interval that should be used to estimate true
left ventricular volume from an angiogram to be 95% confident that the range includes
the true volume.” Reading from Figure 8, when a patient has an angiographic volume of
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100 mL, we predict with 95% confidence that the true volume of the patient’s left
ventricle is between 60 and 105 mL. Use of the prediction interval thus results in a
clinically useful estimate of LV volume.

200 4

150 +

100 <

Cast volume (y), ml

50 4

0 50 100 150 200
Angiographic volume (x), mi
Figure 8. 95% prediction limits for cast volume as a function of
angiographic volume.

Tool Life Example

The following example is from McClave and Benson, A First Course in Business
Statistics’. The data was obtained from pg. 538, applied to problem 11.53b on pg. 564.
We have supplemented this analysis to better illustrate the usefulness of prediction limits.

A manufacturer measured the effective life of a commonly used cutting tool. The
manufacturer performed triplicate measurements at 5 cutting speeds: 30, 40, 50, 60, and
70 meters per minute. The data and linear regression of tool life against speed for the tool
is shown in Figure 9. The figure also shows the 90% prediction intervals across the range
of tested tool speeds. From this figure we see that at a cutting speed of 45 m/min, we
predict with 90% confidence that the tool would have a minimum tool life of 3.4 hrs. The
maximum life we would expect would be 5.6 hrs, with an average of 4.5 hrs.

18



This manufacturer has learned that it is cheaper to replace a tool before it becomes
dull than to redo work marred by a dull tool. Therefore, the manufacturer wishes to
replace the tools after a running time that is known to result in no more than 5% of the
tools becoming dull. The manufacturer decided that although a zero rework rate was

desired, up to a 5% rework rate could be tolerated without impacting production
schedules or manufacturing costs.

On the other hand, there is an economic incentive in not replacing tools
prematurely. Replacing tools every hour would certainly keep rework rates down, but the
costs associated with frequently halting a production run, and of unnecessarily replacing
tools, argue against being arbitrarily conservative. The best way to manage the competing
requirements is to use statistically derived prediction limits, and to apply them to the
matter of manufacturing process control.
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Figure 9. Tool life as a function of cutting speed.

Different cutting processes require different cutting speeds, so no single
replacement time would suffice for all processes. We see from Figure 9 that for a process
requiring a cutting speed of 45 m/min, the replacement time that would result in no more
than 5% of the tools becoming dull is 3.4 hrs, the lower limit of the 90% prediction
interval seen in Figure 9. This result comes from the fact that an estimated 90% of the
tool lives fall between the two 90% prediction limits. That means that 5% of the tool lives
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will fall below the lower limit, and 5% will exceed the upper limit. It is the lower 5%
figure that controls the replacement time.

This example is particularly relevant to the issue of canister durations. For one
thing, the tool life data was obtained by replicate measurements at multiple running
speeds. Canister durations are also made with five replicate runs at four or five
temperatures ranging from 28° to 90° F or more. The variable of interest to the
manufacturer is tool life, just as divers need to know canister life. The controlling statistic
is the lower prediction limit for both the tool life example and for canister life. In both
cases, the critical component is to be replaced before the probability of failure becomes
too large. Also in each case there is a strong incentive for not being unduly conservative.
In one case, overall manufacturing efficiency would suffer from over-conservatism.
Likewise, in a military mission, over-conservatism of canister duration limits (limits that
are too short) would impact operational efficiency.

Comparison of Current and pre-1991 Canister Limit Methods

In Figures 10 and 11 we have again sampled the Truth data set, this time to better
illustrate the differences between the old and new method of deriving canister limits. As
before, we have withdrawn 25 samples from a data set with a mean of 200 min. This
time, however the data set has a standard deviation (o) of 10 instead of 20. Again five
data points were sampled at each of five temperatures spread between 32° and 90°F. In
reality, there was no effect of temperature on the durations.

In the first round of sampling, upper panel of Figure 10, we see that the means of
the samples at all five temperatures (filled circles) varied only slightly from the true
population mean of 200 min. However, the canister limit defined by the sample mean
minus one standard deviation (open circles) varied considerably, with a large dip at 70°
F. Although we might have believed we were defining a canister limit with a 16% risk of
breakthrough by using this method, the true risk varied from 3.5% to 29%, as indicated
by the true risk lines running horizontally across the panel. In the lower panel, both the
slightly curving fitted mean duration line and the lower 95% prediction limit closely
approximate the true 50% and 2.5% risk lines, just as they should. That means that the
prediction limit method of determining canister durations does a much better job of
estimating true risk of canister breakthrough, and of identifying true temperature
dependencies, than does the p — o method.

In the second round of sampling, Figure 11, the estimate of the mean durations
varied about three times as much as in Figure 10. Because the means at both ends of the
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temperature scale happened to be relatively low, regression yielded a curvilinear
prediction limit. The lower prediction limit designed to indicate a 2.5% risk, did so at the
temperature extremes. However, it rose to as much as 6% risk at 60°F. Even then, the
estimated risk was only off by 3.5%. By the p — o method, the actual risk exceeded the
16% target risk by as much as 16%, for a total of 32% risk. On an absolute risk scale, the
prediction limit method yielded substantially reduced errors when by chance the data
appeared to be skewed.
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Figure 10. Pre-1991 method (upper panel) and new method (lower panel) of

determining canister duration limits. Random data selection - no real temperature
effect.
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METHODS
Regression Model Development

The remainder of this report describes the process of generating models, fitting
them to the data, and deriving predictions limits. It concludes with examples taken from
two UBA.

We generate a mathematical model to fit to the experimental canister data in the
following manner.

Assumptions:
1) The independent variable (X) is temperature.

2) The dependent variable (Y) is canister duration in minutes.

3) Y is a continuous function of X (dY/dX not equal to «). In essence, that means
Y can be described by a simple equation.

4) Y is real at X > 0°K. Therefore one term (Y intercept) is required at a
minimum.

5) Y = f(X). Therefore a second term must exist (e.g. Y = a + bX).
6) Y may be a curvilinear function of X: Y = a+ bX°®

7) There is no a priori requirement for monotonicity. Therefore, there can be a 3™
term opposite in sign to the second term.

From these requirements, a group of potential models can be generated. Our
purposes can be served by polynomial models, which are of the form:

Y=a+b-X+c-X*+d-X>..

Polynomials are a class of empirical models that vary in complexity from a single
term to many terms. If the data set to be described is small, the number of terms that can
be justified is also small. If too many terms are added to a model, we obtain a condition
called over-parameterization, characterized by very large confidence intervals.
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The optimal mode! for describing experimental data as a continuous function of
temperature is one that has neither too few nor too many parameters. When dealing with
a single class of models, i.e. polynomials, the optimal model typically yields the lowest
standard error for the fit. The optimal model also results in the narrowest confidence and
prediction intervals throughout the experimental temperature range, and therefore
provides the longest canister duration limits.

Data Analysis and Curve Fitting Procedure

The following procedures will be illustrated with real, not simulated data,
obtained during unmanned canister duration testing at NEDU.
Step 1

The analytical process for a series of canister runs begins with entering the water
temperature and corresponding canister duration into separate columns in a spreadsheet.
Using the graphing program Sigmaplot by Jandel Scientific (San Rafael, CA), we plot the
raw data in a scatter plot as a function of temperature, as in the upper panel of Figure 12.
If the canister durations appear linearly related to temperature, then Sigmaplot can be
used to draw linear regression lines through the data. Frequently, the time required to
reach both 0.5% and 1% CO, (closed and open circles in Figure 12, respectively) or
higher may be plotted on the same graph. Another graph can be created to display
summary statistics (i.e. mean and standard deviation) for each water temperature (Figure
12, lower panel.) The graph and spreadsheet can then be saved in a Jandel Workbook.

Step 2
The next step involves preparation for fitting the data in the spreadsheet to a
mathematical equation or “model.” While virtually any curve fitting software could be

used, including Jandel’s Sigmaplot, we find it convenient to use another Jandel product
called TableCurve 2D.

The first step to using TableCurve 2D is to create a custom equation set, a process
that only needs to be accomplished once. TableCurve can fit over 8,000 linear and
nonlinear equations to data in one processing action. However, it is generally more
useful, and much less risky technically, to restrict curve fitting to a small subset of
equations. Based on the logic expressed in the previous section, we restrict our custom
equation set to standard polynomial equations, and just to be complete, to Y-transformed
polynomial equations. Table 3 lists 23 of those equations. Two of those equations,
marked in gray, are of the greatest interest to us, again based on the Qreceding model
generation logic. Those are the equation for a straight line, equation number 1, and the
equation for a second order polynomial, equation 1003.
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Figure 12. Raw data (upper panel) and simple statistics (lower panel.)
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All of the equations following the third order polynomial, equation 2040, are Y-
transformed equations. These transformations allow the linearization of an otherwise
nonlinear equation, and are included only for completeness. We have yet to find a
situation where they provide a better empirical fit to the data than the low order
polynomials (the first three equations.)

Step 3

The next step is to import into TableCurve 2D the temperature and duration data
from the Sigmaplot spreadsheet, with each variable being located within a separate
column within the spreadsheet. From that point, the user need only select “Process
Custom Equation Set” from the TableCurve Processing menu. At that point, TableCurve
fits all of the custom set equations to the data, and then ranks them in order of best fit.
Under “sort criteria” a number of choices are available. The one we find most useful is
the F-statistic (Appendix B). That sorting preference can be made permanent by setting it
in user preferences for TableCurve 2D.

Sorting by the F-statistic places at the top of the equation list the equation which
best describes the data using the smallest number of parameters. Sorting in this manner
minimizes the risk of over-fitting the data by the use of more parameters than are justified
by the data (The TableCurve manual has a good discussion of the potential pitfalls
involved in curve fitting and parameter estimation.) Table 4 is such a sorted list of fit
equations. In that example, the best equation, that with the highest F-statistic, was
equation 1, the equation for a straight line.

Step 4

The last step is to display the curve fitting results which include the line (which
may be curved) representing the best estimate of the average or “mean” canister duration
as a function of water temperature (Figure 13). It is also possible to plot the 95%
confidence limits on the mean, thereby defining a region within which the true mean
duration lies (with a 95% certainty).

Of greatest importance to establishing canister duration limits, is the plotting of
95% prediction limits (solid lines, Figure 13), two potentially curved lines which enclose
95% of the durations which are likely to occur in future dives. The lower of these limits is
what NEDU uses as a canister duration limit. Ninety-seven and a half percent of canister
durations are likely to fall above that line, and 2.5% of canister are likely to “break”
before that dive time has elapsed, all else being equal.
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Table 3. Custom TableCurve equation set for canister duration limits
containing polynomials and Y-transformed polynomials.

L
1003
2040

22

43

64

85

1213
1423
6101
6102
6103
6111
6112
6113
6121
6122
6123
6124
6131
6132
6133
6134

Eqgn. #
standard polynomials

Equation

ot
y=a+bx+cx2
y=a+bx+cx2+dx3

Y-transformed equations

Iny=a+bx

y-1=a+bx

y0.5=a+bx

y2=a+bx

Iny=a+bx+cx2
y-l=a+bx+cx2
Iny=a+bx+cx2+dx3
Iny=a+bx+cx2+dx3+ex4
Iny=a+bx+cx2+dx3+ex4+fx>
y-1=a+bx+cx2+dx3
y-l1=a+bx+cx2+dx3+ex4
y-1=a+bx+cx2+dx3+ex4+fx5
y0.5=a+bx+cx2
y0-5=a+bx+cx2+dx3
y05=a+bx+cx2+dx3+ex4
y0.5=a+bx+cx2+dx3+exd-+x5
y2=a+bx+cx2
y2=a+bx+cx2+dx3
y2=a+bx+cx2+dx3+ex4
y2=a+bx+cx2+dx3+exd+x5
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Table 4. Fit equations sorted by their F-statistic. The best fit is at the top.
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Figure 13. Best fit linear regression (Equation 1) and 95% prediction limits.

Curvilinear Temperature Dependence

In the next example based again on real, not simulated data, canister durations
were curvilinearly related to temperature, with duration dropping at both ends of the
temperature scale (Figure 14.) At the ends of the measured temperature range, data for
the 0.5% and 1% CO; levels overlap.

Due to the pronounced curvilinearity in this data, the curvefit ranking favors the
second order polynomial over other equations for both the 0.5% (Table 5) and 1% CO;
(Table 6) measurement points. The results of the curvefitting are shown in Figure 15, the
top panel showing results for the 0.5% CO; data and the bottom panel with 1% CO, data.
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Table 5. Curvefit rankings for Figure 14. Sorted by the F-statistic.

N

O 0O NO O WDN

Rank F Statistic =~
4 12.186480729

12.069139485
12.052053317
11.831418656
11.036941569
7.9973458536
7.9662598388
7.8565916688
7.8212708657
7.4276516274
5.6462788687
5.6175850374
5.6332519665
5.5330958886
5.2177171699

45059832247

4.3254555319
4.2794315608
4.2158882219
4.1944634946
4.1314948016
4.1313782635

3.8958954868
3.8566055685

3.2622944574
2.5811560542
2.5425873307

Curvefit Rankings for 0.5% SEV CO,

Eqn# Equation
1003 y=a+bx+cx2
6121 y0.5=a+bx+cx2
6131 y2=a+bx+cx2
1213 Iny=a+bx+cx2
1423 y-1=a+bx+cx2
2040 y=a+bx+cx2+dx3
6122 y0-5=a+bx+cx2+dx3
6101 Iny=a+bx+cx2+dx3
6132 y2=a+bx+cx2+dx3
6111 y-1=a+bx+cx2+dx3
6001 y=a+bx+cx2+dx3+ex4
6123 y0.5=a+bx+cx2+dx3+ex4
6133 y2=a+bx+cx2+dx3+ex4

6102 Iny=a+bx+cx2+dx3+ex4
6112 y-T=atbx+ox2+dx3+ex4
1 y=a+bx
85 y2=a+bx
64 y0.5:a+bx

6002 y=a+bx+cx2+dx3+ex4+fx5
6124 y0.5=a+bx+cx2+dx3+ex4+x5
6134 y2=a+bx+cx2+dx3+ex4+fx5

6103 Iny=a+bx+cx2+dx3+ex4+fx5
6113 y-1=a+bx+cx2+dx3+ex4+fx5
22 Iny=a+bx

6003 y=a+bx+cx2+dx3+ex4+fx5+gx6
6004 y=a+bx+cx2+dx3+ex4+fx5+gxB+hx7
43 y-1=a+bx
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Table 6. Curvefit rankings for Figure 14. Sorted by the F-statistic.

Rank

ES

2
3
4
5
6
7
8
9

17.815211472
17.683478283
17.547664572
17.113176199
11.346228467
11.332728546
11.281373915
11.068585548
10.936302935
8.3077799934
8.2779953127
8.1901135997
8.1898252897
7.8588054962
6.2031423951
6.1809031668
6.1152848211
6.1150695497
5.8679081038
4.8000506628
3.7978422827

2.7486850719

2.7134568482
2.3695816642

1.1246693055

Curvefit Rankings for 1% SEV CO,

1213 Iny=a+bx+cx2

6131 y2=a+bx+cx2

1423 y-1=a+bx+cx2

6122 y0.5=a+bx+cx2+dx3

2040 y=a+bx+cx2+dx3

6101 Iny=a+bx+cx2+dx3

6132 y2=a+bx+cx2+dx3

6111 y-1=a+bx+cx2+dx3

6001 y=a+bx+cx2+dx3+ex4

6123 y0.5=a+bx+cx2+dx3+ex4d
6102 Iny=a-+bx+cx2+dx3+ex4

6133 y2=a+bx+cx2+dx3+ex4

6112 y-1=a+bx+cx2+dx3+ex4
6002 y=a+bx+cx2+dx3+ex4+fx5
6124 y0.5=a+bx+cx2+dx3+ex4+fx5
6103 Iny=a+bx+cx2+dx3+ex4+fx5
6134 y2=a+bx+cx2+dx3+ex4+fx5
6113 y-1=a+bx+cx2+dx3+ex4+fx5
6003 y=a+bx+cx2+dx3+ex4+fxS+gx6

=a+bx+cx2+dx3+ex4+x9+gxB+hx7

64 y0.5=a+bx
85 y2=a+bx
22 Iny=a+bx
43 y-1=a+bx
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Figure 15. Best curvefits for 0.5% and 1% CO, data.
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There is a penalty to pay if one ignores the curvilinearity of the canister duration
data and base canister limits instead on a linear equation (Equation 1). As shown in
Figure 16, that penalty is an overly conservative canister limit throughout the range of the
majority of the data. In other words, our modeling effort is repaid by the maximum
canister duration allowed by the data. '

0 5 10 15 20 25
Temperature (°C)

Figure 16. Comparison of the lower 95% prediction limits resulting from a linear
model (solid line, F = 4.5) and the best fit model, a second-order polynomial (dashed
line, F = 12.2).

CONCLUSIONS
Regression-based prediction limits based on empirical models of CO, canister
performance provide an enhancement over the older methods of determining canister

duration limits. They make maximum use of the data, thereby providing the longest
possible canister duration for a given level of canister breakthrough risk.
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Appendix A: Variable Risk Prediction Limits

The TableCurve software provides 95%, 90%, and 50% prediction limits (with the 50%
limit being based on the estimated mean duration for any given temperature). However, the
process of generating those limits provides intermediate results that can be used to generate other
prediction limits. For example, Figure A1 shows prediction limits varying in risk from 2.5% to
50%. The 10%-30% values were obtained from an additional analysis described below.

440

420 -

400 -

380 4

Duration (min)
'S
o

320 - s
V2 R 2 5%
300 ;/ o . 28
— . 10%
280 —// — 15%
’ —_—. 20%
260 4 — - 30%
240 T T L T
0 5 10 15 20 25

Temperature (°C)
Figure Al. Prediction limits for risk levels ranging from 2.5% to 50%.

TableCurve outputs a numerical summary as shown in Table Al. In that Table we
highlighted results that are essential to the follow-on analysis; namely, Fit Standard Error (s.),

degrees of freedom for error (DOF), Xmean (X ), and Xstd or standard deviation of X values
(sx)-

From these values we find the standard error (§) of a predicted Y, for a given X; by the

following equation:

§_. :Se.\ﬁ.}.l)_}_m

' n (n——l)-sx2

A-1




where n is the number of data points.

Finally, the upper and lower prediction limits (L) are found as follows:

L= Yx i(t%risk '§}7)

i

where the tos is the value found from a table of the critical values of Student’s t-distribution,
_found in any statistics book, with degrees of freedom (DOF) appropriate for the problem, and the
desired percentage risk.

The degrees of freedom given in the TableCurve numerical summary is nothing more than
the number of data points minus the number of fit parameters. For the example of Figures 15 and
16, there were 20 data points and three parameters (a-c) in the best fit model (the top ranked
polynomial equation #1003 in Table 6). Thus the appropriate degrees of freedom is 17.

To find the proper t value, we take the allowed risk, say 2.5%, and express it as a decimal
(0.025). Then we look up in the t table the appropriate value of t for 17 degrees of freedom (v,
usually given in rows) and a one-tailed critical area equal to 0.025 (usually found in columns).
For this particular case, tg osq7 = 2.1098. If the t table happens to be for two tails of the t-
distribution, then the allowed risk should be multiplied by two, and the proper t would be found
under the column for tg 5(17).

NEDU uses in-house developed software that computes upper and lower prediction limits
for any X;. In addition to the above inputs, the only remaining input is a file containing all of the

X; and f’, generated after the TableCurve fitting procedure. That data file is generated by

“Evaluating” (one of the TableCurve options) the best model between the upper and lower
bounds of the existing data set. By evaluating the best fit equation for many values of X, means
and prediction limits can be found for X values falling between those in the actual data set.



Table Al. Numeric Output from TableCurve.

Rank 1 Eqn 1003 y=a+bx+cx2

r2 Coef Det DF Adj r2 F-value
0.5891036222 0.5120605514 12.186480729
Parm  Value Std Error t-value 95% Confidence Limits
a 318.5653904 12.98603957 24.53137376 291.1672418 345963539
b 13.34412691 2916198232 4.575864139 7.19148645 19.49676737
C -0.46290207 0.115402947 -4.01118062 -0.706381 -0.21942313
Area Xmin-Xma}; Area Precision
8758.2763501 0
Function min X-Value Function max X-Value
339.91265596 1.7000031239 414.73353073 14.413553014
1st Deriv min X-Value 1st Deriv max X-Value
-8.7825918 23.9 11.770256997 1.7000031239
2nd Deriv min X-Value 2nd Deriv max X-Value
-0.925804179 19.989509283 -0.925804081 15.8610701
Soln Vector Covar Matrix
Direct LUDecomp
12 Coef Det DF Adj r2 Fit Std Err r2 Attainable
0.5891036222 0.5120605514 26.436260097 0.6009058424
Source Sum of Squares DOF Mean Square F Statistic
Regr 17033.674 2 8516.8371 12.1865
Error 11880.889 %17 698.87585
Total 28914.564 19
Lack Fit  341.25604 2 170.62802 0.221794
Pure Err  11539.633 15 769.30889
Description: D:\UBA\LARV\MK25\closed-circuitUBA
X Variable: tmp
Xmin: 1.7 Xmax: 23.9 Xrange:  22.2
iean: ) Xstd: 88368010406  Xmedian: 10
X@Ymin: 1.7 X@Ymax: 183 X@Yrange: 16.6
Y Variable: 0.5%%*.72
Ymin: 300.24 Ymax: 440.64 Yrange: 140.4
Ymean: 375.372 Ystd: 39.010500287 Ymedian: 374.76
Y@Xmin: 363.6 Y@Xmax: 349.92 Y@Xrange: 13.68

P>t
0.00000
0.00027
0.00091

P>F
0.00052

0.80366
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Appendix B: The F-statistic

The next two paragraphs are quoted from the Jandel TableCurve manual, pgs 8-30 and 8-
31.

"The F-statistic is a measure of the extent to which the given equation represents the data.
If an additional parameter makes a statistically significant contribution to a model, the F-statistic
increases. Otherwise, a decrease occurs. The higher the F-statistic, the more efficiently a given
equation models the data.

In a parametric model, the main interest is in the value of the parameters or coefficients.
In such cases, the number of parameters is very important and their values are usually the object
of the fitting. If you are fitting non-linear equations, you will almost always wish to use the F-
statistic option as the sort criteria. Even when fitting linear equations for an approximating
function, the F-statistic option may be an effective way of ordering the equations so that the
simpler and yet effective equations find their way nearer the top of the equation list."

The F-statistic is most often encountered in discussions of analysis of variance
(ANOVA). It is actually a ratio, and thus it is often called the F-ratio. It is defined as:

SSM - SSE
e MSR _ a1
MSE SSE

DOF

where MSR is the so-called "mean square regression" and MSE is the "mean square error". SSM
is the sum of squares about the mean, and SSE is the sum of squares due to error, DOF is degrees
of freedom, and m is the number of coefficients fitted.

The SSE measures the discrepancy between a predicted canister duration and a measured
duration. Thus it reflects the amount of error in the prediction.

SSE = ﬁ:(yi ".i\’i)2

i=1

The SSM describes how much the y values (canister duration) vary around their mean
value.

SSM =307, - )
i=1




The F-statistic becomes large when the amount of variation around the mean y is large
compared to the differences between predicted and actual y's. In general. the larger the F-
statistic, the better the fit of the regression curve to the data.

The coefficient of determination (r%), commonly encountered in regression, shares some
attributes in common with the F-statistic.

) SSE

_1_

SSM

The degree of freedom adjusted 1* is even more similar to the F-statistic:

) SSE -(n-1)
r=1-
SSM -(DOF -1)

Nevertheless, only the F-statistic takes into account the number of parameters (m) fit to
the data. All else being equal, a model which uses two parameters will provide a larger F-statistic
than one using three parameters. The F-statistic thus guards against over-fitting the data; using
more parameters than are necessary to describe the data. Using parameters that do not produce a
significant improvement of the model fit only serve to reduce the F-statistic.

Like all of the statistical methods discussed in this report, the F-statistic requires some

assumptions about the data. The effect of departures from the underlying assumptions are

rigorously described in Scheffe's The Analysis of Variance".



